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Abstract— The problem of object shape and pose estimation
is integral to various robotic tasks ranging from manipulation
to object-level localization and mapping. Given that only
partial observations are often available due to self-occlusions
or occlusions in the scene, past works have attempted to
reconstruct object shapes from incomplete data. The majority of
current shape estimation methods rely heavily on vast datasets
to learn discrete object shapes from images. While effective
for previously known and well defined objects (e.g. cars and
bottles), these methods could fall short when fitting shapes of
arbitrary objects (e.g. rocks or deformed packages).

In this work we present a novel approach to estimating a con-
tinuous and differentiable shape estimate to partially observable
objects. Leveraging past work on computing ellipsoid estimates
to objects, our method improves on such coarse estimates by
deforming the prior ellipsoid to tightly fit partial observations
while retaining a reasonable volume. For a simulated dataset
with available ground truth shape and pose information, we
show that without relying on prior shape or semantic knowledge
our method captures finer geometric details relative to other
continuous shape estimates and produces a continuous and
differentiable estimate that aids in the computation of grasp
poses for the object.

I. INTRODUCTION

As roboticists work towards incorporating robots into
unstructured environments, from our kitchens to unexplored
planets, we wish to employ them with the skills needed to
safely and accurately interact with objects in their space via
manipulation. To this end, it is necessary for robots to have
an understanding of the shape and pose of these objects such
that they can reason about grasping them effectively. While
the grasping task can be solved when perfect information
about the geometry of an object is available [1], such
knowledge is difficult to come by in the real world. For
instance, one sensor cannot capture hidden parts of objects
due to self-occlusions, and in dynamic and unstructured
environments multiple objects can interact and occlude one
another. Therefore, a manipulation system must be able to
reason about objects using incomplete data alone.

To tackle the object-shape estimation challenge from im-
perfect information, prior works have attempted to learn the
full shape of an object from partial data. Some employed
learning methods to reconstruct the shape of a partially-
observable object from visual observations [2] and others
learned to adapt previously known prior shapes to the current
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Fig. 1: 3D illustration of DELSE. (a) A primitive ellipsoid S̄ (in
blue) is fitted to a partial observation of an object O. (b) The partial
observation Z (black points) is complemented with the support
point cloud Zs (green points). The free-form-deformation control
points P are arranged in a regular grid and shown in red. (c) Starting
with the shape of S̄, the estimated shape ŜP is deformed to fit the
ground truth shape S∗ of the banana by adjusting the positions of
the control points P .

observations [3]–[5] (e.g. using 3D models of cars to estimate
novel automobile shapes). These methods, however, rely on
the availability of massive amounts of semantically-relevant
training data. This data is difficult to gather when the objects
of interest are novel (e.g. rocks, items in unknown packag-
ings, etc.). Such objects are often semantically ambiguous
and do not fit a clear semantic class so it is not possible to
adapt preexisting intra-class shape examples to observations.

Among previous works that attempted to be independent
from the semantics of the grasped objects, some sought
to estimate a primitive shape (such as a superquadric or
an ellipsoid) to fit the partial observations [6], [7]. These
works have exploited the favorable mathematical properties
of continuous and differentiable shapes to facilitate shape
estimation and grasping. For instance, it is possible to recover
a quadric representation (the generalized family of spheres
and ellipsoids) for an object from planes that bound its
observations [8], [9], to check if points are colliding with a
quadric [10], [11], and to find grasps on an object [1] when
it is represented parametrically. However, in the context of
robotic manipulation, such coarse primitive representations
of objects might not capture sufficient geometric features to
allow effective grasping. See Fig. 1(a, b) for an example.
Methods like [12] attempt to directly learn to rank grasps
from partial point-cloud observations. While they do not
suffer from the coarseness of the quadric representation, they
also do not exploit the benefits of a continuous and dif-
ferentiable representation that contain approximate curvature
information for every point on the surface of the shape.

In this work, we provide a method for improving coarse
shape estimates such that they capture finer geometric details
in the estimated objects. Building on past work where



Fig. 2: An illustration of the performance improvements facilitated
by deforming an ellipsoid prior S̄ to fit a partially observed box
object with true-shape S∗ (the shape of the cracker box in this
example). Image (a) shows a primitive ellipsoid fit to the box
observation and image (b) shown antipodal vectors (short red lines)
computed on the estimated surface. These vectors do not facilitate
good grasps as they are far from the surface. DELSE can improve on
this performance. Image (c) shows free-form-deformation control
points overlaid on the ellipsoid prior and images (d, e, f) show the
deformed ellipsoid with newly computed antipodal normal vectors.
The estimated surface ŜP is now closer to the true box shape S∗

and allows for the computation of better surface normals.

quadric representations for object shape and pose estimation
were employed [8]–[10], [13], our method treats such prim-
itive shapes as priors and adapts them to better approximate
the true shape of a partially-observed object. To achieve
this improvement, we compute a free-form-deformation [14],
which is a 3D-sculpturing technique widely used in computer
graphics, to parameterize a change for a coarse initial shape
estimate that deforms it to fit the object better.

We demonstrate the advantages of our method in simu-
lated tests. Evaluating DELSE on a variety of objects, our
results show that DELSE successfully recovers good approxi-
mate object-shapes from partial point-cloud observations and
qualitatively verify that the inferred shapes are sufficiently
accurate for grasping. Our method’s shape estimates are, on
average, 66.5% better than the estimate given by an ellipsoid
in terms of a Chamfer distance between the estimates and
the true object shapes.

Moreover, our evaluation highlights the benefits of con-
tinuous and differentiable representations for shape estimate.
In this formulation, we are able to solve for a family
of antipodal grasps directly from the shape estimate. This
benefit allows for a fast and purposeful search for antipodal
grasps over the object shape estimate and, as we show,
effective recovery of grasp points.

Our method “Deforming Ellipsoids for Shape Estima-
tion” (DELSE) is an object shape-estimation method that
recovers a continuous and differentiable shape representation
for a partially-observable object while preserving the level
of detail available in discretized observations. Our main
contributions are:

• A novel method for optimizing free-form-deformations
for ellipsoids.

• Our System DELSE for recovering continuous shape-
estimates from partial point-cloud observations.

• An optimization framework for computing favorable
grasps to perform object manipulation.

• An ablation study of the impact of noise in the initial
ellipsoid estimates on the quality of the DELSE esti-
mates.

In the following sections, we formulate the shape esti-
mation and grasping problems (Section II), and discuss our
shape approximation method (Section III) as well as the
procedures for recovering primitive shape estimates and an-
tipodal grasp points (Sections III-A and III-C). We describe
our algorithm for computing shape estimates from partial
point-cloud observations by adapting a coarse primitive es-
timate. Finally, we report experimental results (Section IV)
and show that our method achieves improved performance
when compared to other methods that employ continuous
representations.

II. PROBLEM FORMULATION

We are interested in the problems of shape estimation and
robotic grasping of irregularly-shaped objects (e.g., rocks,
bananas, defective parts, etc.). Given that it is possible
to recover a rough initial shape estimate for an object of
interest—in the form of a sphere, an ellipsoid or a super-
quadric for example — our aim in this work is to deform such
a primitive initial shape-estimate such that it better represents
the real shapes of an object. Fig. 1 illustrates this process.
We further exploit the continuous and differentiable nature of
our refined estimates to find favorable grasps for objects. We
formally introduce the shape estimation problem in Section
II-A and the antipodal grasping heuristic in Section II-B.

A. Object Shape Estimation

Given an observation Z of an object O with shape S∗ :
[0, 2π)2 → R3, our objective in the shape estimation problem
is to find an estimate shape ŜP : [0, 2π)2 → R3 that is
“close” to the ground truth shape S∗. This estimated shape
ŜP maps a pair of Euler angles θ, φ ∈ [0, 2π) to a point in
R3, and is parameterized by some collection of parameters
P . We measure “closeness” with a metric D : S2 → R with
S being the set of all continuous, differentiable, and closed
shapes in 3D. Formally, we wish to find

min
P
D(S∗, ŜP). (1)

In our formulation, the partial observations are
point clouds Z with Npcl points, such that
Z =

{
zi : zi ∈ R3 lies on O, i ∈ {1, 2, . . . Npcl}

}
.

B. Antipodal Grasps

We obtain points on the surface of ŜP that are thought to
be effective for grasping O by leveraging the continuous and
differentiable surface of the estimate shape ŜP . The antipodal
heuristic for computing such points is finding a pair of points
A = {a0,a1} with ai ∈ R3 and on ŜP for i ∈ {0, 1}



such that the normals to ŜP at points ai are approximately
collinear. Antipodal points are especially favorable for simple
and widely used two-finger grippers. With grasp points being
collinear and opposite, contact forces exerted from grippers
on an object work against each other and do not induce
rotation to the model–a detrimental behavior that can arise
when forces are not exerted along one line. In Fig. 2,
antipodal points are denoted in the rightmost image with
red points.

III. DELSE

We seek to leverage Deformations of Ellipsoids to per-
forms Shape Estimation (DELSE). After recovering an ellip-
soid prior, DELSE computes a deformation to the ellipsoid
to perform shape estimation for a partially observable object.
In order to fit a continuous and differentiable shape ŜP to
an object O that is partially observed through observations
Z in 3-dimensions, we proceed in three steps. Section III-
A briefly discusses fitting a primitive ellipsoid S̄ to the
partial point cloud observation Z . Section III-B details our
contribution, which is the optimization of the deformable
shape ŜP originally taking on the shape of the prior S̄,
to better estimate the shape S∗ of the object O. Finally,
Section III-C presents our chosen method for extracting
effective antipodal grasp points from the refined estimate ŜP
to facilitate robotic manipulation of O.

A. Primitive Shape Prior

Our method DELSE leverages a primitive shape S̄ for
the optimization of ŜP to fit O. Building on work where
ellipsoids and super-ellipsoids have been used as continuous
shape estimates for an object [8], [10], [13], we chose
ellipsoids as our primitive shape S̄ as illustrated in Fig.
1(a,b). An ellipsoid can be compactly defined [9], [15], [16]
with the implicit equation

(x− c)TQ(x− c)− 1 = 0, (2)

where Q ∈ S3++ is a 3 × 3 positive definite matrix and
x, c ∈ R3. The matrix Q fully determines the orientation
and scale of the ellipsoid and c specifies its centroid. In this
construction, for any point x in 3D space the expression
(x− c)TQ(x− c) − 1 acts as an inside-outside function:
taking on the value 1 if x is on the surface of S̄. Otherwise,
it will output an algebraic distance to the surface with a
negative sign indicating x being inside the ellipsoid and
positive otherwise.

The implicit representation makes it possible to find a
primitive ellipsoid estimate by inferring the parameters in
Q and c via solving the minimization

min
Q,c

det(Q−1)

s.t. (xi − c)TQ(xi − c) ≤ 1 for i = 1, 2, . . . n

Q > 0

(3)

as formulated in [16]. The solution of this optimization
problem is the minimum volume enclosing ellipsoid to the
n observation points Z = {x1, . . .xn} ∈ R3.

Fig. 3: DELSE constructs a point cloud support by using the
primitive ellipsoid shape-estimate to provide approximate structure
to the self-occluded portions of the observed object O. In this
illustration O is a banana (a) and the dark points show the
partial point cloud observation of Z (b). The observation provides
incomplete information about the true shape of O, in gray (b).
The construction of the point cloud support is illustrated in (c) and
(d). The dark line from xc connects the camera and an arbitrary
observation point xi ∈ Z . The green lines are drawn from the
camera position to support points, which are the ellipsoid surface
points that are approximately occluded by the observation point xi.
In the absence of point-cloud support (c’), we show that the shape
estimate ŜP is thin. It tightly fits the observation of the object and
not the object itself. When point cloud support is use, in (e), the
estimated shape assumes a reasonable volume.

B. Shape Optimization

Having recovered an initial shape estimate S̄ for the
partially observed object O, DELSE further refines the
ellipsoid representation to better fit O. To find a well-fitting
shape ŜP to the object O, DELSE infers the parameters P
governing a free-form-deformation (FFD) of S̄ such that
ŜP = FFD(S̄,P) approximates S∗, the true shape of O.

1) Free Form Deformation: A Free-Form-Deformation
(FFD) [14] is a space-morphing function widely used in
computer graphics for shape deformations. Parameterized by



a grid of (l+ 1)× (m+ 1)× (n+ 1), l,m, n ∈ N>1 control
points P , as illustrated in Fig. 2, a point x ∈ R3 is moved
to the cartesian coordinate FFD(x,P) according to

FFD(x,P) =

l∑
i=0

Bl,i(s)

m∑
j=0

Bm,j(t)

n∑
k=0

Bn,k(u)Pi,j,k.

(4)
In this formulation, Bn,k(p) = ( n

k ) pk(1 − p)n−k is
the binomial function, [s t u]

T is the point x normal-
ized to the grid frame, and Pi,j,k is the 3D control
point at the (i, j, k)th index, which is potentially displaced
from its original location in the initially regular lattice.
Pi,j,k ∈ R3 exists for combinations of i ∈ {0, 1, ...l}, j ∈
{0, 1, . . .m}, and k ∈ {0, 1, ...n}. Since the free-form-
deformation is a 3D extension of a Bezier curve [14],
the offsets of control points P from their initial locations
parameterizes a smooth deformation of points x according
to a combination of points P . Therefore, a smooth and
differentiable input (e.g. an ellipsoid) yields a smooth and
differentiable output.

2) Point Cloud Support: Given that our method operates
on partial observations Z of an object O, self-occlusion
would lead Z to only include points on the visible faces of
O. Thus, simply deforming ŜP from the primitive shape S̄
to fit the observed point cloud Z would yield unsatisfactory
results (see Fig. 3(c’)). To remediate this problem, we rely
on our prior estimate S̄ to provide a point cloud support Zs

to the observation Z .
The supporting point cloud Zs is a set of points sampled

from S̄ in the self-occluded regions of O, illustrated in
Fig. 1(b) and in Fig. 3. To construct Zs, it is necessary to
understand which areas on S̄ are self-occluded and should
be sampled. We proceed in the following steps, which are
illustrated in Fig. 3

Aiming to find points on the ellipsoid that are “hidden”
behind the current observation Z , we construct vectors vi =
xi − xc between the camera location xc and each point
xi ∈ Z . Additionally we construct a vector uj = sj − xc

between xc and a queried point sj ∈ S̄ on the ellipsoid
surface. Any ellipsoid surface point sj ∈ S̄ is said to be self-
occluded by the observation point xi if there exists a camera-
to-observation vector vi that is approximately collinear with
the camera-to-ellipsoid vector uj and sj is farther from xi

with respect to the camera. Formally, the support point cloud
takes on the values in the set

Zs = {xi ∈ Z :vT
i uj > 1− ε and ‖vi‖ < ‖uj‖
∀uj with sj ∈ S̄}

(5)

for some small and positive ε. When optimizing the initial
ellipsoid to fit O, the reference point cloud is the union of
the observation and the support

Z ← Z ∪ Zs. (6)

Fig. 4: Illustration of computed antipodal surface normals to a
deformed shapes. Clockwise per object from the top left, the images
show a partially observed object with a fitted ellipsoid prior (in
red), the deformed ellipsoid shape estimate to the object computed
with DELSE (in blue), a collection of feasible grasp points to
the object, and the antipodal surface normals overlaid over the
scene. Following our method outlined in Section III-C with the
reference vector k set to the desktop normal vector, we visually
verify that the computed antipodal normal-vector pairs are feasible.
The Pitcher example on the bottom right shows a potential failure
case, where normals are placed away from the self occluded surface
since information regarding the depth of the object is not available.
On the bottom left, the Tuna-Can example illustrates a success case
where normals are computed in regions that are self-occluded.

3) Optimization: We formulate the process of fitting ŜP
to a reference point cloud Z as an optimization. Given the
continuous nature of ŜP and the discrete Z , we choose to
operate in the discrete domain. To this end, we sample points
on Ŝ to obtain the point cloud Ŝd

P . We note that each point
si ∈ Ŝd

P is governed by control points P . For example, a
choice of Euler angles θ, φ ∈ [0, 2π) samples a point si =
FFD(S̄(θ, φ),P) on ŜP . Since FFD(·, ·) is continuous
and differentiable, it is possible to perform gradient-based
optimization for the positions of P by adjusting the sampled
points si.

Aiming to adjust the sampled points si on Ŝ such that
they are close to the reference point cloud Z , we use the
Chamfer Distance DChamfer metric to measure the quality of
our fit [17].

DChamfer(Z, Ŝd
P) =∑

zi∈Z
‖zi −mŜd

P
(zi)‖2 +

∑
si∈Ŝd

P

‖si −mZ(si)‖2 (7)

with mX(y) = arg minxi∈X ‖y−xi‖2 denoting the nearest
point to y in among points in set X .

Adding a regularization term λ(P), composed of the L2

distance between control points P and their original positions



Fig. 5: Shape estimation evaluation with objects from the Falling Things dataset scenes. For each object (five of eight instances illustrated)
in the dataset, we quantify estimation quality by computing a Chamfer Distance between points sampled from objects’ true shape and
points sampled from their respective estimated shape via DELSE (in red) and via ellipsoid estimate (in blue). Lower Chamfer Distance
is better. The plots above include histograms (and Gaussians of best fit) of the Chamfer Distances obtained over 100 samples of each
object. The blue fitted histograms correspond to ellipsoid estimates and the black ones correspond to ours. Our experiments show average
Chamfer Distance reduction of at least 44%, pointing to the efficacy of DELSE in estimating shapes for partially observable objects.

(to keep control point deviation small) and a penalty on
neighboring control points overlapping on any axis (to battle
self-intersections), our optimization is

min
P
DChamfer(Z, Ŝd

P) + λ(P). (8)

We recover the estimated shape ŜP from the optimized
control points by applying a free-form deformation to the
primitive ellipsoid. With slight abuse of the notation intro-
duced in Section III-B, ŜP = FFD(S̄,P).

C. Antipodal Points
We exploit the continuous and differentiable nature of

our shape estimate ŜP to compute antipodal grasp points
A = {a1,a2} = {ŜP(θ1, φ1), ŜP(θ2, φ2)}. One advantage
of a continuous shape representation is the ability to directly
compute the curvature and surface normal for any arbitrary
point on the shape. Specifically, a normal vector at the point
ŜP(θ0, φ0) takes on the form

n(θ, φ) = η

(
∂

∂θ
ŜP(θ0, φ0)

)
×
(
∂

∂φ
ŜP(θ0, φ0)

)
(9)

with η being a normalizing factor to make n ∈ R3 of unit
length. In general, it is possible to analytically solve for
pairs of global antipodal points (i.e. without restricting the
orientation of the points) with methods such as [1]. However,
since we are mainly concerned with shape estimation for
robotic applications where physical constraints may limit the
range of possible control points (e.g. a robotic arm cannot
move through a table), we choose to leave analytical grasp
computation for future work.

To compute grasping poses given a continuous shape we
begin by samplng its surface in points parameterized by
(θ1, φ1), . . . (θm, φm) and compute a collection of normal
vectors N = {n(θ1, φ1), . . .n(θm, φm)}. Given the normal
vector collection N , the antipodal grasp problem reduces to
the task of finding a pair of normals n(θ1, φ1),n(θ2, φ2) ∈
N , with associated points a1 = ŜP(θ1, φ1),a2 =
ŜP(θ2, φ2), that are approximately collinear, that point in
opposite directions, and that produce a physically feasible
grasp.

We find a pair of collinear normals n1,n2 that correspond
to the surface points a1,a2 by solving

arg min
n1,n2∈N

n1(a1 − a2)T + n2(a2 − a1). (10)

This objective ensures that the normals are pointing in
opposite directions and are collinear with the line connecting
their start points.

To satisfy the physical feasibility requirement, we choose
a vector k that is thought to be the direction along which
the robotic end-effector can move. For example, in a setting
where items are on a desktop, k could be the normal vector to
the desktop. Thus, these physical feasibility constraint vector
(or a collection of vectors) could be found automatically or
encoded ahead of time using task-specific knowledge. To
satisfy this condition, normal pairs should be perpendicular
to k. Our final optimization for finding antipodal points is
therefore

arg min
n1,n2∈N

n1(a1 − a2)T + n2(a2 − a1) + |n1k
T |+ |n2k

T |.

(11)
with the last two components taking a value of zero when k
and the surface normals n are perpendicular, i.e. the grasp
pose can be executed by a robotic end-effector that moves
along k.

IV. EXPERIMENTAL RESULTS

In this section we detail our simulated experiments. We
show the efficacy of DELSE via

• our quantitative results on an object shape and pose
estimation dataset,

• via qualitatively evaluating the performance of our
grasp-pose computation pipeline,

• and with an analysis the the behavior of DELSE under
varying configurations.

Fig. 5 visualizes our shape estimation evaluation results for
five example objects.



Fig. 6: Analysis of the impact of the number of control points on
the quality of shape estimates. We varied the number of control
points l = m = n used to generate a shape estimate for three
objects (banana, scissors, and drill) across 30 frames each. In the
plots we compare the shape estimate to the ground truth shape
via a Chamfer Distance and denote the computation time with the
size and transparency of the circular dots. The shaded regions are
the 99% confidence intervals. We note that after the performance
improvement between 0 and 2 control points per axis (with 0
control points being the ellipsoid estimate), the later improvement
is relatively small. We provide visualizations of the deformation
given by 1, 4, and 10 control points on each axis for the three
objects as well.

A. Dataset

We evaluate DELSE via the Falling Things (FAT) dataset
[18]. This dataset provides depth images for objects in
various settings alongside their true pose and shape. All
images include segmentations for the shown objects as well.

B. Shape Estimation Evaluation

To evaluate the efficacy of our proposed method we com-
pare our resulting shape estimates to an ellipsoid estimate
baseline, which is a popular choice for continuous object
shape representation [10], [13]. Our baseline ellipsoid shape
estimate is computed with the method detailed in Section
III-A.

In our shape-estimation experiments, we have used the
Chamfer Distance (Eq. 7) metric to quantify the quality of a
shape estimate given the true shape of the estimated object.
For an object O, we sample points {s∗i } from the surface of
its true shape (transformed to its true pose in the evaluated
scene), we sample points {x̄i} from the ellipsoid estimate S̄,

and sample points {ŝi} from the DELSE estimate ŜP . We
assign S̄ the estimation quality

QBaseline = DChamfer ({s∗i } , {s̄i})

and assign the DELSE output ŜP the quality score

QDELSE = DChamfer ({s∗i } , {ŝi}) .

Finally, we compute the improvement in the estimate be-
tween the ellipsoid baseline and our method with the ratio
(QBaseline−QDELSE)/QBaseline and interpret a higher improve-
ment score as better.

Our results show that DELSE provides a substantial im-
provement to the baseline shape estimate provided by the
ellipsoid baseline. Across 800 frames from the FAT dataset,
where each of 8 objects appears alone in 100 frames, DELSE
provided an average improvement of 66.5%. As shown in
Fig. 5, both irregularly shaped objects and relatively smooth-
shaped objects benefit from our method. For example, the
DELSE estimate for scissors is 88.4% better than the el-
lipsoid baseline estimate and in the cracker box example
DELSE provided an average improvement of 62.2%. Table I
details our quantitative shape estimation on the FAT dataset.

Chamfer Distance ↓ for method
DELSE Ellipsoid Improvement ↑

Marker 261.83 1398.0 81.27%
Pitcher 2969.7 6286.1 52.7%

Tune Can 330.10 662.64 50.1%
Bowl 989.14 1789.1 44.7%

Scissors 545.01 4700.4 88.4%
Drill 1404.8 5400.2 73.9%

Mustard 1066.8 2678.3 60.1%
Banana 519.12 2144.1 75.7%

Box 2609.8 6916.8 62.2%

TABLE I: Quantitative shape estimation results on the Falling
Things (FAT) dataset comparing DELSE to an ellipsoid prior. We
report the average Chamfer Distance between object ground truth
shapes and estimated shapes via DELSE and an ellipsoid prior for 8
objects across 800 frames. The symbol ↓ denotes that a lower value
is better, and ↑ that a larger score is preferable. For all evaluated
objects, DELSE successfully improves upon the ellipsoid estimate.

C. Grasp Pose Evaluation

We qualitatively evaluate the performance of our method’s
ability to recover grasps from a given continuous and differ-
entiable shape estimate, as illustrated in Fig. 4. On the FAT
dataset, we show that the continuous and differentiable nature
of our estimates can facilitate the computation of analytical
surface derivatives and for the recovery of visually effective
grasps. Robot experiments are left to future work.

D. Ablation Analysis

1) Number of Control Points: Free-form-deformations
can, in theory, capture finer details when more control
points are in use. An increase in the number of control
point, however, makes the optimization of the Free-Form-
Deformation more difficult. The analysis in Fig. 6 illus-
trates the relationship between a choice of the number of
control points to the estimation quality and computation



Fig. 7: Analysis of the impact of noise in the prior ellipsoid estimate
on the quality of the deformed ellipsoid shape estimates. Applying
zero-mean Gaussian noise on the shape and translation of the
ellipsoids, we varied its variance σ2 ∈ {0.5, 1, 2, 3, 4}. For the
objects Marker, Banana, and Drill, the range σ2 ∈ [0, 2] seemed
to induce little degradation while performance for σ2 ∈ [2, 4]
was worse. The images on the right illustrate primitive ellipsoids
generated with different noise levels. Data for this analysis was
generated from 30 images for each of the objects and the shaded
regions are 99% confidence intervals.

time. Perhaps un-intuitively, our results suggest that after
the initial quality improvement achieved by performing a
free-form-deformation on the primitive ellipsoid with a small
number of control points, adding more control points does
not offer significant quality improvements but does increase
runtime. We have experimentally found that 4 control points
per axis on a symmetric regular grid performed produced
the best results. On an un-optimized CPU, 300 iterations of
the DELSE optimization take between 2 and 5 seconds to
execute.

2) Sensitivity to Ellipsoid Prior: Given that our method
relies on an ellipsoid shape estimate prior to computing a
suitable deformation, we provide an analysis of our esti-
mation pipeline’s response to noise in the ellipsoid prior
parameters. As shown in Fig. 7, we applied zero-mean
Gaussian noise on the shape and translation of the ellipsoids
and varied its variance σ2 ∈ {0.5, 1, 2, 3, 4}. We observed
that performance generally degrades with increase in the
values of σ2 and hypothesize that this trend is induced by
the change in the quality of the point cloud support Zs. An
ellipsoid prior that does not cover the observation will not
provide support to self-occluded regions of the object.

V. CONCLUSION

In this work we have presented a novel shape estimation
method for recovering continuous and differentiable esti-
mates for partially observable objects. Our method DELSE
improves upon past work in continuous shape-representation
by adding a refinement module that can be applied to any
prior shape estimate. In our experiments, DELSE leveraged
an ellipsoid shape prior for partially observed objects and
further refined it to better fit the observed objects–yielding
an average 66.5% improvement. Experimentally, we showed
that the DELSE shape estimates fit observed objects better
than ellipsoid estimates and that it is possible to compute
physically feasible antipodal grasps from our estimates.

The benefits of continuous and differentiable shape es-
timates may extend beyond shape estimation and grasp
computation. We believe that this representation choice
could aid in producing novel solutions to problems such as
instance-level object data-association and robot localization
and mapping. We leave such inquiry to future work.
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